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Mid-infrared (MIR) spectroscopy is used to address certain issues connected with the authentication
of beef and ox kidney and liver: is it possible to distinguish muscle from offal tissue; does the
condition, cut of meat, or type of offal influence the distinction; can pure minced beef be distinguished
from that adulterated with offal? Using partial least squares (PLS) and canonical variate analysis,
predictive models are developed to identify MIR spectra of beef, kidney, and liver. Using modified
SIMCA, the pure beef specimens are modeled as a single class; this model identifies spectra of
unadulterated beef as such, with an acceptable error rate, while rejecting spectra of specimens
containing 10-100% w/w kidney or liver. Finally, PLS regressions are performed to quantify the
amount of added offal. The prediction errors obtained ((4.8 and (4.0% w/w, respectively, for the
kidney and liver calibrations) are commensurate with the detection limits suggested by the SIMCA
analysis.
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INTRODUCTION

Food fraud is not a new problem. Instances of adul-
teration, that is, the partial substitution of high-value
raw materials with cheaper alternatives, have been
recorded since ancient times. Some infamous cases of
adulteration have led to appalling health problems, such
as the substitution of lead oxide for certain spices and,
more recently, the addition of antifreeze to wine and of
a toxic contaminant to olive oil. However, the outcome
of most food fraud raises economic rather than health
concerns; no consumer wants to be cheated or to pay
more for a commodity than it is worth.

In the case of meat products, fraud may take the form
of adulteration with less costly cuts from the same or
different animal species, offal, water, or cheaper pro-
teins of animal or vegetable origin. In earlier work (Al-
Jowder et al., 1997), we conducted a feasibility study
on the use of mid-infrared (MIR) spectroscopy as a rapid
method for species identification and quality control of
turkey, chicken, and pork mince. Infrared spectroscopy
represents an attractive option for quality screening,
because it is rapid, low-cost, and noninvasive. The MIR
region in particular provides information on a very large
number of analytes, and the absorption bands are
sensitive to the physical and chemical states of indi-
vidual constituents. The high spectral signal-to-noise
ratio obtained from modern instruments means that
even constituents present in quite low concentrations
can be detected, as well as subtle compositional differ-
ences between multiconstituent specimens.

The work reported in the present paper examines the
use of MIR spectroscopy for detecting the adulteration
of raw, minced beef with certain types of offal obtained

from the same species, specifically, ox kidney and liver.
The following issues are addressed: using MIR spec-
troscopy, is it possible to distinguish beef muscle from
offal tissue types; if so, then is the distinction influenced
by the cut of the beef, the nature of the offal, or the
specimen condition (fresh or frozen-thawed); and fi-
nally, is it possible to distinguish pure minced beef from
that adulterated with some quantity of offal and with
what limit of detection?

EXPERIMENTAL PROCEDURES

Specimens. Specimens of beef, ox kidney, and ox liver from
different animals were purchased from local food retailers. The
beef muscle tissue included specimens of three different cuts:
brisket, neck, and silverside. All specimens were minced on
the day of purchase, using a Krups coffee blender, which was
carefully washed and dried between each preparation, using
detergent, 0.2% Triton-X solution, and distilled water. All
minced specimens were divided into two unequal-sized por-
tions. The smaller of these was designated for use as a “fresh,
unadulterated” specimen and stored in the refrigerator before
spectroscopic acquisition. The larger portion was stored at -30
°C, for later spectroscopic analysis as a “frozen-thawed,
unadulterated” specimen and for preparation of mixtures of
beef and offal (the “adulterated” specimens). The mixtures
were prepared by combining an amount in the range of 10-
90% w/w of either kidney or liver with randomly selected
specimens of each of the three cuts of beef.

Instrumentation and Spectral Acquisition. All spectra
were collected on a Spectra-Tech (Applied Systems Inc.)
Monitir Fourier transform infrared (FTIR) spectrometer sys-
tem, fitted with a sealed and desiccated interferometer and a
room temperature deuterated triglycine sulfate (DTGS) detec-
tor. An attenuated total reflectance (ATR) accessory was built
into one of two dedicated sampling stations. The accessory
comprised transfer optics within a desiccated chamber, sealed
from the atmosphere by two potassium bromide windows.
Through these windows, the infrared radiation was directed
into a detachable ATR element, which could be removed for
cleaning without ingress of water vapor into the spectrometer.
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The ATR element was a (nominal) 11-reflection zinc selenide
crystal mounted into a plate with a shallow trough for
specimen containment. The crystal geometry was a 45° paral-
lelogram with mirrored angle faces.

Fresh and frozen-thawed unadulterated specimens were
each further divided into two and infrared spectra recorded
of both portions. A single infrared spectrum only was recorded
of each mixture. A summary of the specimen types and spectra
recorded is given in Table 1. For spectral acquisition, the
specimens were spread directly onto the ATR element. The
ATR plate was thoroughly cleaned between acquisitions by
removing the specimen with tissue and cleaning with 0.2%
Triton X-100 solution and distilled water. This procedure was
found to efficiently remove traces of fat from the ATR crystal.
Spectra were recorded from 800 to 4000 cm-1, at a nominal
resolution of 4 cm-1. For each spectrum, 64 interferograms
were co-added and a triangular apodization was employed
before Fourier transformation. The single-beam spectrum of
each specimen was converted into absorbance units using a
single-beam background of the clean ATR plate collected under
identical conditions. All absorbance spectra were truncated to
470 data points in the range of 900-1800 cm-1 (the “finger-
print” region; this is often the most useful part of the MIR
spectrum). Baseline correction was carried out using a single
definition point at 1800 cm-1.

Chemometric Analysis. Four distinct investigations were
undertaken. For the first three, data analysis was carried out
using the Win-DAS (Wiley, Chichester, U.K.) software pack-
age. For the fourth investigation, data analysis was carried
out using the MatLab matrix programming language (The
Mathworks Inc., Natick, MA).

Exploratory Analysis. In addition to visual examination of
the spectra, a well-known “data compression” technique was
employed, called principal component analysis (PCA) (Jolliffe,
1986). A primary aim of PCA is to transform data comprising
measurements of many properties or “variates” (here, these
are measurements of spectral absorbance at several hundred
infrared frequencies) into a new data set of much more
manageable size. The transformed variates are known as
principal component (PC) “scores” and are ordered such that
the first few contain most of the information that was spread
across all of the original data. This reduction in complexity is
helpful for exploration of large and complex data sets. Patterns
or clusters may be revealed that were not apparent from
viewing the original data, although, crucially, no predefined
structure is imposed; in other words, PCA is not a modeling
technique.

Partial Least-Squares (PLS)/Canonical Variate Analysis
(CVA) Modeling. Following data exploration, a combination
of chemometric methods was used to model two potential group
structures within the data set. The first model sought to
distinguish between the beef muscle, kidney, and liver speci-

men types. The second model involved the spectra of muscle
tissue only and sought to differentiate the three different cuts
of beef. The chemometric approach used for this modeling work
comprised two further data compression methods: PLS (Mar-
tens and Naes, 1989a) and CVA (Krzanowski, 1988). PLS is
best-known for its use in calibration applications, in which the
relationship between two data sets (spectroscopic and concen-
tration data, for example) is modeled using a series of local
least-squares fits; it is used in this way in the fourth of the
data analyses, discussed below. However, PLS can also be used
in discrimination work, in which case the second data set
comprises one or more “dummy” variates, which represent the
proposed group structure. This approach was taken in the
present analysis. The scores produced in PLS also reduce
complexity in the data set and can be passed as variates to
subsequent procedures.

CVA also makes use of information on the proposed group
structure; CV scores by definition exhibit maximum separation
and minimum spread of the predefined groups. CVA is also a
data compression technique, insofar as it rearranges the
information in a data set so that usually only the first few
scores are of interest. However, it cannot be applied directly
to “high-dimensional” data (in which the number of variates
exceeds the number of spectra), and for this reason, PLS is
used as a precursor to CVA in the present work; subsets of
the available PLS scores only are passed to the CVA procedure.
Because in both cases, there are only three proposed groups,
only two CV dimensions exist, and the characteristics of the
CVA transformation mean that a plot of the CV scores provides
the best possible representation for highlighting any differ-
ences between the groups. CVA can also be used to make
definitive statements about the group membership of indi-
vidual spectra, through the use of tolerance regions con-
structed in the CVA coordinate system.

Like all modeling methods, PLS and CVA are best carried
out in “training” and “test” phases. In the training phase, the
CVA transformation is applied to PLS scores obtained from
data allocated to a “training set”. An impression of the
performance of the PLS/CVA model is obtained from the CV
score plot and tolerance regions, but it is also important to
carry out a test phase, in which the model is applied to a set
of independent data not used the model development (the “test
set”). The aim of the test phase is to show that the model is
neither over- nor underfit and is able to generalize successfully
to data other than that used in the training phase. The PLS/
CVA modeling work reported here was carried out in training
and test phases. The allocations of the available data to
training and test sets are given in Table 2. In both analyses,

Table 1. Summary of the Specimen Types and Spectra
Recorded

spectra recorded

specimen type
no. of

specimens fresh frozen-thawed

beef (brisket) 19 38 38
beef (neck) 21 42 42
beef (silverside) 20 40 40
ox kidney 21 42 42
ox liver 22 44 44

total 103 206 206

mixtures of beef (brisket,
neck, or silverside)
with 10, 12, 14, ..., 90%
w/w ox kidney

41 0 41

mixtures of beef (brisket,
neck or silverside)
with 10, 12, 14, ..., 90%
w/w ox liver

41 0 41

total 82 0 82

Table 2. Allocations of the Spectra to Training and Test
Sets for the PLS/CVA, SIMCA, and PLS Regression Work

training set test set

PLS/CVA Analysis a
beef (all cuts) 160 (40)a 80 (20)
kidney 56 (14) 28 (7)
liver 56 (14) 32 (8)

PLS/CVA Analysis b
brisket 52 (13) 24 (6)
neck 56 (14) 28 (7)
silverside 52 (13) 28 (7)

SIMCA Analysis
beef (all cuts) 160 (40) 80 (20)
beef adulterated with kidney 0 41 (41)
kidney 0 84 (21)
beef adulterated with liver 0 41 (41)
liver 0 88 (22)

PLS Regressions

internal cross-validation

beef adulterated with kidney 41 (41)
beef adulterated with liver 41 (41)
a Numbers in parentheses indicate the number of independent

specimens giving rise to these spectra.
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it was decided to apportion approximately two-thirds of the
spectra in each proposed group to the training set and one-
third to the test set, ensuring that each family of four spectra
(two “fresh”, two “frozen-thawed”) arising from a single
original specimen was apportioned to either the training or
test set. Within these constraints, the allocations were made
randomly.

SIMCA Class Model for Spectra of Pure Beef Muscle. The
aim of this analysis was to develop a protocol for detecting
the adulteration of minced beef with either of the two offal
types. This kind of problem is sometimes called “asymmetric”,
because it involves in essence two dissimilar groups of
specimens: one well-defined category of interest (here, the
pure minced beef) and a second group comprising a much
broader range of specimens (liver, kidney, or beef mince
adulterated with some quantity of these). Asymmetric prob-
lems can be tackled with discriminant analysis methods such
as PLS/CVA. However, the class modeling approach is con-
ceptually more appealing; it places no constraints on the
distributional characteristics of the broad group, whereas in
CVA, all groups are ideally normally distributed. In class
modeling, the assumption is made that data from the well-
defined category constitute a single normally distributed class,
from which it follows that certain quantities derived from the
data will also be distributed in a particular way. Tests applied
to these quantities are then employed to determine whether
individuals can be regarded as members of the class or should
be rejected as nonmembers.

The class modeling approach used in the present work is
based on the SIMCA method, in which PCA plays an integral
part. Let a spectrum be represented by a (1 × d) vector x,
where d is the number of variates. In SIMCA, this vector is
regarded as a composite of three quantities: the “class center”
µ (which is the mean training set spectrum), a product term
z(r)P(r)

T , obtained by multiplying a (1 × r) vector z(r) of PC
scores for the spectrum by an (r × d) matrix P(r) of PC loadings
computed from the training set, and a (1 × d) vector e of
“residuals” for that spectrum:

The first of the SIMCA class membership tests concerns the
subset of scores z(r). In geometric terms, a “box” is defined in
the PCA coordinate system, within which the scores for a
spectrum must lie if it is to be accepted as a genuine class
member. The boundaries of the box in each PC dimension are
given by the critical values at the required probability level
in a suitable statistical test, for example, Student’s t test.

The second class membership test involves the vector of
residuals e. The size of the elements in this vector can be
summarized by calculating the sum of their squares, to give
the “residual-sum-of-squares” for the spectrum, RSSs. A similar
quantity can be defined that summarizes the residual for the
entire training set, RSSclass. The ratio RSSs/RSSclass is in effect
a ratio of two variances, suggesting that the well-known F test
may provide an indicator of class membership. In practice,
however, some researchers have found that the proper critical
value in the F test is too restrictive (Defernez, 1996). An
empirical criterion of RSSs/RSSclass < 3 has been proposed as
an alternative test for class membership (Kemsley, 1998), and
this “modified F test” is used in the present work. To be
accepted as a genuine class member, a spectrum must pass
both the collective t tests and the modified F test.

In class modeling, the training set comprises data from the
single class of interest only. However, in the test phase of the
analysis, the class model should be challenged with both
known members and nonmembers of the class, to examine its
ability to respectively accept or reject each type of individual
correctly. The allocation of specimens to the training and test
sets for the present analysis is given in Table 2.

Calibration Using PLS Regression for the Offal Content of
Muscle/Offal Mixtures. The purpose of this analysis was to
determine whether the amount of added kidney or liver could
be quantified in the MIR spectra of the mixture specimens
only. For this work, we have used PLS regression. In this
method, the spectral data are transformed to a set of new
variates (the PLS scores), using the concentration data to
determine the parameters of the transformation. A subset of
the scores is then used in a conventional multiple least-squares
regression onto the concentration data. As in all regression
methods, it is important to ensure that the model obtained is
neither over- nor underfit by conducting a validation proce-
dure. In the previous analyses, this was achieved through
separate training and test phases, but in the present analysis,
we will use an alternative approach called “internal cross-
validation” (ICV). In ICV, one spectrum is omitted from the
data set, and the remaining data are used to obtain a model,
which is then applied to the excluded, “test” spectrum. This
process is repeated as many times as there are spectra in the
data set, omitting each spectrum in turn; this produces a
complete series of predictions for the entire data set. ICV is
an acceptable alternative to the training/test approach, and
it has the advantage of being particularly suitable when small
numbers of specimens are involved (Defernez and Kemsley,
1997). In the present work, ICV is carried out for PLS
regression models over a range of different dimensionalities
(i.e., numbers of PLS scores), and the optimal subset identified
by the first minimum in the error of prediction.

RESULTS AND DISCUSSION

Exploratory Analysis. The chemical composition of
different beef cuts can vary quite considerably, depend-
ing on the proportions of fat and lean tissue present;
the same cut taken from different animals can also show
variability. The major constituents are water, protein,
and fat. Although quantitative determination was not
the object of the present study, it is useful to examine
typical values for these constituents published in the
literature (McCance and Widdowson, 1991; Chan et al.,
1995). An indication of the water, protein, and fat
contents of lean and fat tissue is given in Table 3. A
typical cut contains a mixture of lean and fat and so
will have a composition intermediate between these
extremes. Typical compositional data for two of the cuts
used in the present study, brisket and silverside, are
also given in the table. No information could be obtained
for neck. Data are also available in the literature for
the two types of offal used in the study, kidney and liver.
There is an important point of note to be made from
examination of these values: in addition to water,
protein, and fat, liver also contains an appreciable
amount of carbohydrate, present in the form of glycogen.

Some of these compositional characteristics are re-
flected in the infrared spectra of the different specimen

Table 3. Typical Compositional Data for Beef, Kidney, and Liver Obtained from the Literature

specimen type
water

(% w/w)
protein
(% w/w)

fat
(% w/w)

carbohydrate
(% w/w)

beef, lean muscle tissue (av values obtained from 6 different cuts) 74 20.3 4.6 0
beef, fatty tissue (av values obtained from 6 different cuts) 24 8.8 66.9 0
brisket (av values obtained from 18 specimens, 77% lean) 62.2 16.8 20.5 0
silverside (av values from 10 specimens, lean) 72.2 23.8 4.3 0
ox kidney (av values obtained from 18 specimens) 79.8 15.7 2.6 0
ox liver (av values obtained from 30 specimens) 68.6 21.1 7.8 2.2 (present as

glycogen)

x ) µ + z(r)P(r)
T + e (1.1)
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types. Figure 1 shows the fingerprint region of a
spectrum of one selected fresh liver specimen. Although
the spectral features are quite overlapped, it is never-
theless possible to attribute certain prominent features
to individual chemical species; bands associated prima-
rily with water, fat, protein, and carbohydrate are
indicated. Figure 2 shows the fingerprint region of the
complete collection of fresh, unadulterated specimens
(the spectra of the frozen-thawed specimens were
highly similar and in the interests of clarity are not
shown). The most noticeable variation between these
sets of spectra is the group of features in the region
1000-1200 cm-1 present in the spectra of liver and
attributable to the glycogen content of these specimens.
Although the other specimen types are not thought to
contain carbohydrate, their spectra nevertheless show
some features in this region, which are also quite
variable, albeit much smaller in size. Whereas carbo-
hydrates exhibit strong absorptions, other chemical
species including fats give rise to minor bands in this
region, and these small features can be attributed to
other absorbing constituents of beef and kidney. The fat
content indicated by the slight shoulder at 1744 cm-1

appears to be highest in the brisket and silverside
specimens, lower for the cuts of neck, and lower still or
absent for the offal. This is consistent with what we
might expect from the published compositional data.
The spectra of the three different cuts of beef are
visually very similar. There is generally more variation
within the brisket and silverside groups, which may
imply greater compositional variability. However, some
caution needs to be exercised in interpreting absolute
spectral intensities, due to the problems of analyzing
semisolids using ATR. Irreproducible contact between
the specimen and the ATR crystal is one potential source
of unwanted spectral variability. In addition, it can be
difficult to use ATR for compositional analysis of
specimens that are heterogeneous on the micrometer
scale, although this is not of primary concern in the
present work.

PCA was applied to the complete collection of spectra
of unadulterated specimens, fresh and frozen-thawed.

The first five PC scores only were retained for examina-
tion to make exploration as simple as possible. The
variances of these accounted collectively for >99% of the
total variability in the data set (respectively, 87, 8, 2,
1, and 1%), so we can be confident that only a very small
proportion of the total information content will be
neglected by discarding the remaining scores.

Plots of the first five PCs against one another were
examined to look for patterns or clusters in the data
that corresponded to the different specimen types.
Figure 3a shows a plot of the first versus fifth scores,
which exhibited the clearest division of the spectra
according to specimen type. The kidney and liver groups
in particular are well-separated. The groups corre-
sponding to the three different cuts of beef are much
more overlapped, although there is still some indication
that the specimen types may be distinguished. However,
the fresh and frozen-thawed specimens within any one
type did not form separate groups, neither in this score
plot nor in any of the other plots examined. Figure 3b
shows an expansion of the region indicated in Figure
3a, in which are plotted the scores for the silverside
specimens only. We conclude that any influence the
condition of the specimens may have is small compared
with the other sources of variability in the data set.

However, earlier work (Al-Jowder et al., 1997) had
indicated that MIR spectroscopy can readily distinguish
between fresh and frozen-thawed turkey, chicken, or
pork, by applying PCA to the data from each specimen
type separately. This approach was applied to each of
the five specimen types in the present study, and plots
of the PC scores were examined. Some distinction
between the fresh and frozen-thawed specimens could
be found, although, in all cases, the discrimination was
not as great as had been found in the earlier work on
other meat species. Figure 4 presents two typical score
plots, showing the PC scores that best highlight the
distinction between fresh and frozen-thawed specimens
of silverside and kidney.

Returning to Figure 3a, we see that the first PC only
provides quite a good discriminator between the beef,
kidney, and liver specimens. In such instances, where
only one or very few PC scores demonstrate a pattern
of interest, it can be worthwhile examining the corre-
sponding PC “loadings”. In mathematical terms, each
PC score is a weighted sum of the original variates. It
is produced by multiplying the original spectra by a
vector of “weights”: these vectors are usually known as
loadings. A large weight (positive or negative) on a
particular variate indicates that it makes an important
contribution to the associated score. Furthermore,
weights that are close to zero indicate that a particular
variate has little influence on the score. When one is
dealing with spectroscopic data, it makes sense to plot
the loadings themselves as spectra, that is, as response
versus spectral frequency. It is often found that features
can be identified in the loadings that were also present
in the original spectra, and sometimes these can be
ascribed to individual absorbing species. In Figure 5,
we present the first five PC loadings from the present
data set. The first loading represents primarily protein
and carbohydrate. The latter is not surprising, because
we have already noted that the spectra of liver can be
distinguished visually by the presence of bands arising
from glycogen in the region 950-1200 cm-1. However,
the positive features in the region 1550-1650 cm-1 that
can be identified with the amide I and II protein

Figure 1. Fingerprint region of a spectrum of one selected
liver specimen.
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absorptions show that protein content also helps to
distinguish the different specimen types.

The exploratory analysis has shown that it is rela-
tively easy to identify the spectra of beef, kidney, and
liver. There is also some indication that it may be
possible to distinguish between the three different cuts
of beef. In the next section, we investigate whether these
two potential group structures can be effectively mod-
eled. Specimen condition appears to have a more minor
effect on the spectra: to reveal a distinction between
the fresh and frozen-thawed groups, the data from each
specimen type need to be examined separately. In light
of these findings, no further attention is paid to the
condition of the specimens in the work that follows,
other than to note that spectra of fresh and frozen-
thawed individuals are represented equally within all
defined training and test sets.

PLS/CVA Modeling. The first group structure to be
modeled using PLS and CVA comprised three pre-
defined groups: beef (all cuts), kidney, and liver. It was
felt that in light of the exploratory analysis, the three
different cuts of beef should be placed together in one
group for this analysis, because these specimens are
clearly much more similar to one another than to the

offal types. PLS data compression was applied to the
training set as defined in Table 2.

The next step in the analysis was to apply CVA to a
subset of the PLS scores. The number of scores to pass
as variates to the CVA is an important issue. There are
some “rules-of-thumb” that can help to ensure that the
models produced are useful and valid. In general, the
analysis should be made as simple as possible; variates
(that is, PLS scores) should not be included just because
they are available. To avoid overfitting, the number of
PLS scores used in the CVA should not exceed one-sixth
the number of independent specimens in the training
set. In the present analysis, CVA was applied to the first
three PLS scores only. Figure 6a shows the CV score
plot obtained, with the 95% tolerance regions [as
described in Kraznowski (1988)] for each group indi-
cated. The three specimen types are well-separated,
with no overlap between the 95% tolerance regions for
each group. Because the training set comprised data
from 68 independent specimens (which produced 272
spectra), we can be reasonably confident that the model
is not overfit; however, a test phase will further prove
its validity. Figure 6b shows the results obtained from
applying this model to the test set. The 95% tolerance

Figure 2. Fingerprint region of the complete collection of fresh, unadulterated specimens: (a) brisket; (b) neck; (c) silverside; (d)
kidney; (e) liver.
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regions established in the training phase are also
marked on this figure. The pattern of CV scores is highly
similar to that obtained for the training set, indicating
that the model is not overfit and is able to generalize.
We conclude that a successful predictive model has been
obtained, and MIR spectroscopy is readily able to
differentiate the beef, kidney, and liver specimen types.

The same PLS/CVA approach was applied to the
training set comprising data from the three different
cuts of beef only. In this case, the first nine PLS scores
were required to produce a CV score plot that ad-
equately separated the specimen types (Figure 7a),
although the 95% tolerance intervals for the brisket and
silverside groups still exhibited some overlap. Further-
more, because the number of independent specimens is
now only 40 (160 spectra), there is a strong possibility
that this model is somewhat overfit. Indeed, proceeding
to the test phase, we find that the performance of the
model on the test set is appreciably poorer (Figure 7b).
However, there are still some systematic differences;
spectra of the neck specimens in particular form a
distinct group that can be readily distinguished. Al-
though the brisket and silverside groups exhibit more
scatter and overlap, some degree of separation is
nevertheless present. These findings are consistent with
the observed differences in the original spectral data.

To determine reliably the boundaries of the brisket and
silverside groups, the number of specimens analyzed
needs to be increased; furthermore, it is possible that
some inherent overlap will always be present. We
conclude that certain cuts of beef can be identified using

Figure 3. Results of the PCA of the entire unadulterated data
set: (a) first versus fifth PC scores; (b) expansion of the marked
region in (a), showing scores for the silverside specimens only.

Figure 4. Typical score plots obtained from separate PCAs
applied to spectra of (a) silverside and (b) kidney.

Figure 5. First five loadings obtained from the PCA of the
entire unadulterated data set. Vertical scale is the same in
all cases, but the loadings are shown offset for clarity.
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MIR spectroscopy, although for others the distinction
may be less clear. Furthermore, the differences among
these specimen types are considerably less than between
the beef and offal types.

SIMCA Class Model for Spectra of Pure Beef
Muscle. The first step in the SIMCA analysis was to
apply PCA to the training set comprising data from
specimens of pure beef mince only. The variance associ-
ated with each PC was examined. The first six PC scores
were found to have variances representing g1% of the
total information content (respectively, 56, 22, 13, 5, 2,
and 1%) and collectively accounted for ∼99% of the total
variance. These thresholds are sometimes used to
determine which PCs to retain; inclusion of scores with
very small variances is not desirable, because it is likely
to make the resultant class models too specific and
unable to generalize. We have used these criteria for
subset selection in the present work.

A SIMCA class model was created. This comprised
two steps. First, a “box” was defined in the first six
dimensions of the PCA coordinate system, with the
boundaries of the box collectively defined by the t-test
critical value at the 5% probability level. To be accepted
as a genuine class member, scores for an individual
spectrum must fall within this box. Second, the quantity
RSSs/RSSclass was calculated for each spectrum from the
residual PC dimensions. To be accepted as a genuine
class member, an individual must also fulfill the crite-

rion RSSs/RSSclass < 3. Note that the PCA coordinate
system was defined by the training set only, and
individuals in the test set were rotated into this
coordinate system before application of precisely the
same class membership tests.

The acceptance rates for each type of specimen are
expressed in percentage terms in Table 4. We see that
94% of the spectra of pure beef are accepted by the t
test as such; this corresponds to a “type I error rate”
(incorrect rejections) of 6%, which is commensurate with
the probability level in use. A similar acceptance rate
of 95% is obtained by the modified F test, but it is not
possible to comment on whether this outcome is as
expected, because the critical value employed is prag-
matic rather than probabilistic. With the requirement
that an individual passes both class membership tests,
we find that 92% of the spectra of pure beef are accepted
as such, corresponding to a type I error rate of 8%. In

Figure 6. CV score plot for the beef, kidney, liver model (using three PLS scores): (a) training set; (b) test set.

Figure 7. CV score plot for the brisket, neck, silverside model (using nine PLS scores): (a) training set; (b) test set.

Table 4. Results of the SIMCA Class Membership Tests,
Expressed as Percentage Acceptance of Each Specimen
Type into the “Pure Beef” Class

specimen type

accepted
by t test

(%)

accepted by
modified
F test (%)

accepted by both tests
(that is, accepted as

pure beef) (%)

beef (includes training
and test set
specimens)

94 95 92

kidney 13 0 0
liver 0 3 0
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contrast, it is found that none of the spectra of adulter-
ated and “non-beef” specimens are accepted by the
SIMCA class model. Therefore, we estimate the detec-
tion limits for both kidney and liver in beef to be <10%
w/w.

The results of the modified F test can be easily
represented graphically, and this is done for the com-
plete set of spectra in Figure 8. The quantity RSSs/
RSSclass calculated for the training set, which comprises
specimens of pure beef only, is shown versus spectrum
number in Figure 8a. For ease of examination, the
results for the test set are presented separately for each
specimen type: Figure 8b shows RSSs/RSSclass for the
pure beef specimens, and Figure 8c and Figure 8d show
RSSs/RSSclass for specimens containing 10-100% kidney
and liver, respectively. Also included on the plots is the
threshold value of 3, which marks the accept/reject
boundary for the class. It is less easy to represent the
SIMCA t test in graphical form. For the present
analysis, in which six PC dimensions are employed, a
two-dimensional score plot can at best depict only a
limited projection of the box defining the class. However,
this may still provide quite an effective means of
visualizing the class model, particularly if certain PCs
are especially important for separating the pure and
adulterated specimens. In fact, we find that a plot of
the first versus second PCs provides the best such
representation (Figure 9). Also marked on this figure
are the boundaries of the box projected into these two
dimensions. From this figure, we can identify 19 spectra
of pure beef that are rejected from the class for falling

outside the boundaries of the box. It should be remem-
bered, however, that the spectra of “non-beef” specimens
falling within the box boundaries are not incorrectly
accepted into the class, because they fail either the t
test in at least one of the remaining PC dimensions or
the modified F test.

The “type II error rate” (incorrect acceptances) of 0%
is clearly a desirable outcome. However, the relative
rates of type I and II errors can be controlled to some
extent by the analyst and are therefore somewhat
arbitrary. For example, it can be seen from Figure 8 that
by increasing the threshold used in the modified F test
and therefore the number of type II errors, the number
of type I errors could be reduced. Similarly, employing
a lower probability level in the t test could in theory
decrease the type I error rate but would probably lead
to an increase in the number of type II errors. This
tradeoff between the two error types is an issue to be
borne in mind whenever class membership tests are
defined, and in practice, the acceptance criteria can be
adjusted to meet the requirements of the task at hand.

Calibration Using PLS Regression for the Offal
Content of Muscle/Offal Mixtures. Two separate
analyses were carried out, one to calibrate for the
quantity of added kidney and the second for the quantity
of added liver in minced beef. As a first step, PLS
regression was applied to the two data sets comprising
41 spectra in each case (see Table 2). The model
dimensionality was varied across a range and the
standard error of calibration (SEC) (Martens and Naes,
1989b) recorded. Next, ICV was used to obtain the
standard error of prediction (SEP) (Martens and Naes,
1989c) for the same range of model dimensionalities.
Both the SEC and the SEP are shown in Figure 10
versus the number of PLS scores used. The optimum
model dimensionality was chosen as that producing the
first minimum in the SEP. This occurred for the kidney
calibration using eight PLS scores and for the liver
calibration using four PLS scores. This is consistent with

Figure 8. Quantity RSSs/RSSclass, plotted for (a) training set
(9, pure beef specimens); (b) test set (9, pure beef specimens);
(c) test set (b, specimens containing 10-100% w/w kidney);
(d) test set (2, specimens containing 10-100% w/w liver). The
boundary at RSSs/RSSclass ) 3 is marked (- - -).

Figure 9. Representation of the SIMCA class model in two
dimensions of the PC coordinate system.
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the larger differences observed between the spectra of
liver and beef specimen types; in effect, this is an
“easier” problem for the regression to tackle. The
predictions obtained by ICV are plotted versus the
actual concentration of adulterant in Figure 11, for the
eight- and four-score models for, respectively, kidney
and liver. The correlation coefficients (R) between the
actual and the predicted values are marked on the plots.
The SEP was 4.8% w/w for the kidney calibration and
4.0% w/w for the liver calibration. The definition of the
detection limit in regression is somewhat controversial
(Miller and Miller, 1993), but the values of the SEP are
commensurate with the detection limits suggested by
the SIMCA analysis of <10% w/w for both adulterants.
Thus, we conclude that PLS calibration enables us to
quantify the amount of offal added to the meat cuts,
with acceptable precision and accuracy.

CONCLUSIONS

The work reported here has shown that MIR spec-
troscopy is useful for a variety of different analyses of
minced beef, ox kidney, and ox liver. It is readily able
to distinguish between the muscle and offal tissue types.
In some instances, the identification can be made
directly by visual examination: for example, MIR
spectra of liver exhibit bands arising from the small
glycogen content, which distinguishes these from the
other specimen types. However, chemometric methods
are required for the reliable identification of the re-
maining specimens.

Using the combined technique of PLS/CVA, predictive
models were developed to distinguish the beef, kidney,
and liver specimens and the three different cuts of beef.
It was found that the beef and offal types could be
readily distinguished; however, the distinction among
the three cuts of beef was much less clear. The neck
specimens formed a distinct group, but the silverside
and brisket groups could not be entirely separated, and
it is possible that there is an inherent overlap between
these two specimen types. Exploratory analysis showed
that specimen condition (fresh or frozen-thawed) had
a relatively minor influence on the spectra, and this
factor is not believed to have affected the outcome of
the modeling work.

SIMCA class modeling was used to develop a single
class model for the pure beef specimens. This model was
able to accept spectra of pure beef as genuine class
members, with a type I error rate of ∼8%. The SIMCA
model was also challenged with beef specimens adulter-
ated with quantities in the range of 10-100% w/w of
kidney or liver. All of these specimens were rejected by
the model (giving a type II error rate of 0%). This
suggests a detection limit for these adulterants of <10%
w/w. Finally, PLS regression was used to quantify the
amount of added kidney and liver, in two separate
calibrations. The values for the SEPs obtained (4.8%
w/w for the kidney calibration and 4.0% w/w for the liver
calibration) were commensurate with the suggested
detection limits obtained by the SIMCA analysis.
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Figure 10. SEC (O) and SEP (/) as a function of the number
of PLS scores for (a) kidney and (b) liver added to minced beef.

Figure 11. ICV predictions for added (a) kidney (using eight
PLS scores) and (b) liver (using four PLS scores).
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